Рений в жидком состоянии. Металл рений. Нахождение в природе

Атомный номер – 75, Re. Название берёт от Рейна – реки в Германии. Открыт металл в 1925 г. Получение первой партии рения произошло в 1928г. Последний из открытых элементов с известным стабильным изотопом.

Рений – металл с белым оттенком. Порошок рения имеет напротив чёрный окрас. Это очень твёрдый и плотный по структуре металл. Плавление — 3186º С, кипение — 5596º С. Имеет парамагнитные свойства.

Природный минерал рений фото ниже:

При температурном режиме свыше 300º С, металл начинает интенсивно окислятся, в зависимости от повышения температуры. Реакции рения более устойчивы к окислу, чем например, у вольфрама. Реакций с водородом и азотом почти не происходит, лишь адсорбция с водородом.

Во время нагревания начинает происходить взаимодействие с хлором, фтором и бромом. Не растворяется в кислотах, кроме азотной кислоты. При взаимодействии рения с образуется амальгама.

Взаимодействуя с пероксидом водорода (а точнее его водным раствором), образует рениевую кислоту. Единственный элемент, представляющий тугоплавкие металлы, не образующий карбидов.

Известно, что рений не задействован в биохимии. О его возможном воздействии имеется довольно малок количество фактов, но достоверна его токсичность, поэтому в любом случае он ядовит для живых существ.

Добыча и происхождение рения

Это крайне редкий металл. В природных залежах наиболее часто встречается сочетание вольфрам – рений – молибден. Примесь этого элемента также содержится в минералах его соседей. Основная добыча рения идёт из залежей, где он извлекается попутно.

Также рений извлекается из редчайшего природного минерала, именующимся джезказганит — по названию казахского города, вблизи которого он был найден. Также рений содержится в колумбите (ниобии), колчедане, цирконе и некоторых редкоземельных минералах.

Рений рассредоточен по всему миру, в ничтожных концентрациях. Достоверно известно лишь одно серьёзное месторождение этого метала – Итуруп, маленький остров на Курилах, Россия. Открыто в 1992 г. Рений там представлен минералом рениитом ReS2, имеющим строение схожее с молибденитом.

Месторождение представляет собой небольшую площадку на вершине спящего вулкана, где активно действуют термальные источники. Это говорит, что месторождение продолжает свой рост, и по предварительным оценкам оно ежегодно выкидывает в атмосферу около 37 тонн этого металла.

Вторым более или менее пригодным для промышленной разработки источником рения, можно считать месторождение Хитура, находящееся в Финляндии. Там рений содержится в минерале таркианите.

Как получают рений? Производство этого метала происходит посредством обработки первичного сырья с довольно низким процентом металла. В основном используются обрабатываются медные и молибденовые сульфиды.

Этапы пирометаллургического процесса, применяющегося при работе с содержащими рений рудами, включают в себя процедуру плавления, конвертирования и окислительного обжига.

При огромных температурах плавления сначала получается высший оксид Re2O7, задерживающийся специальными улавливателями. Нередко часть рения остаётся в саже после обжига, из которой его можно получить с помощью водорода. Далее полученный порошок переплавляют в рения.

При плавлении из руды возгоняется большая часть рения, остаток оседает в штейне. В процессе конвертации штейна, содержащийся в нём рений выделяется посредством газа.

Концентрация рения производится с помощью серной кислоты, после чего получается рениевая кислота. Используя определённые методы очистки, рений выделяется из кислотного раствора.

Исходя из довольно низкой продуктивности данного метода – выход может составить не более 65% содержащегося в руде металла, постоянно проводятся научные изыскания на предмет выявления более продуктивных альтернативных методов производства металла.

Современные технологии уже подразумевают применение водного раствора, вместо кислотного. Это позволит улавливать гораздо больше металла при во время очистки.

Применение рения

К основным преимуществам рения, за что его так ценят во всём мире, считаются тугоплавкость, малая коррозия при воздействии различных химических веществ и т.д. В виду высоких на этот металл, его стараются использовать только в крайних и исключительных случаях.

Ещё не так давно, основной областью его применения были жаростойкие сплавы рения с различными металлами, используемые в ракетостроении и авиастроительной промышленности.

В частности, сплавы шли на производство запчастей для сверхзвуковых истребителей. Подобные сплавы включают в свой состав, по меньшей мере, 6% металла рения.

Этот аспект быстро сделал реактивные двигатели крупным источником потребления мировых запасов рения. К тому же за счёт этого он стал считаться военно-стратегическим запасом.

Специальные термопары, содержащие рений позволяют измерять огромные температуры. Рений позволяет платиновым металлам продлить их срок службы. Также из рения делаются пружины для точной аппаратуры и нити накаливания для спектрометров и манометров.

Если точнее, то там используется с рениевым покрытием. За счёт его устойчивости к химическим воздействиям, рений используется для создания защитных покрытий против кислотной и щелочной среды.

Рений нашёл применение при изготовлении специальных контактов, которые самоочищаются после кратковременного короткого замыкания. На обычных контактах остаётся окисел, который порой не пропускает ток. На рении он тоже остаётся, но вскоре улетучивается. Поэтому контакты из рения имеют очень долгий срок службы.

Но особо важным аспектом его применения стало использование рения в специальных катализаторах, с помощью которых производят определённые компоненты . Участие в процессе переработки нефтепродуктов, повысило спрос на рений в несколько раз. Мировой рынок уже не на шутку заинтересовался этим редкоземельным металлом.

Цена рения

Мировой запас этого металла составляет порядком 13 тысяч тонн по большей части в молибденовых и медных залежах. Они являются его основными источниками в металлургической промышленности.

В принципе это не удивительно, более 2/3 всего рения на планете содержится именно в них. А оставшаяся треть представляет собой вторичный материал.

По некоторым подсчётам этих запасов хватит ещё лет на триста не меньше. Причём в этом отчёте вторичное использование не учитывалось. А подобные проекты разрабатывались достаточно давно, и некоторые проекты на практике доказали свою состоятельность.

Цены на любой продукт устанавливаются основываясь на доступность товара. Как становиться ясным, рений, купить который по карману не каждому, отнюдь не доступный металл. К тому же имеется активный спрос на рений. Цена у него естественно соответствующая.

По данным на 2011 г. чтобы приобрести рений, цена за грамм составляла около 4,5 $. Значительных тенденций к понижению цен не наблюдалось. К тому цена зависит от степени очистки металла, поэтому рений может стоить как 1000 $ за целый килограмм, так и в десять раз дороже.

Рений (от латинского Rhenium) в периодической системе Дмитрия Ивановича Менделеева обозначается символом Re. Рений - химический элемент побочной подгруппы седьмой группы, шестого периода; его атомный номером 75, а атомный вес 186,21. В свободном состоянии семьдесят пятый элемент - тяжелый (только осмий, иридий и платина по плотности немного превосходят рений), прочный, тугоплавкий светло-серый металл, довольно пластичный (его можно прокатывать, ковать, вытягивать в проволоку), по внешнему виду напоминающий платину. Естественно, что пластичность рения, как и большинства других металлов, зависит от чистоты.

Известно тридцать четыре изотопа рения от 160Re до 193Re. Природный рений состоит из двух изотопов - 185Re (37,40 %) и 187Re (62,60 %). Единственный стабильный изотоп - 185Re, изотоп 187Re радиоактивен (испытывает β-распад), но период полураспада огромен - 43,5 миллиарда лет. Испуская β-лучи, 187Re превращается в осмий.

История открытия семьдесят пятого элемента весьма протяженная по времени: еще в 1871 году Д. И. Менделеев говорил, что в природе «обязаны» существовать два химических аналога марганца, которые в периодической системе должны располагаться под ним, занимая пустовавшие в то время клетки № 43 и 75. Менделеев условно назвал эти элементы эка-марганцем и дви-марганцем. Многие пытались заполнить пустующие клетки, однако ни к чему, кроме отработанных вариантов, это не привело. Правда, для химиков XX века круг поисков значительно сузился благодаря стараниям многих ученых со всего мира.

Результата добились немецкие химики - супруги Вальтер и Ида Ноддак, занявшиеся данной проблемой в 1922 году. Проделав колоссальную работу по рентгеноспектральному анализу более чем полутора тысяч минералов, Вальтер и Ида в 1925 году заявили об открытии недостающих элементов, сорок третья позиция в периодической системе, по их мнению, должна была заняться «мазурием», а семьдесят пятая - «рением». Проверить достоверность научного открытия вызвался известный немецкий химик Вильгельм Прандтль. Жаркая полемика продолжалась долго, результатом которой была патовая ситуация - убедительных доказательств в отношении мазурия супруги Ноддак представить не смогли, зато рений в 1926 году был уже выделен в количестве двух миллиграмм! Кроме того, открытие нового элемента подтверждали независимые работы других ученых, которые всего на несколько месяцев позже супругов Ноддак начали свои поиски семьдесят пятого элемента. Однако новому семьдесят пятому элементу было суждено получить имя от своих первооткрывателей, которые назвали его в честь Рейнской провинции Германии - родины Иды Ноддак.

Большая часть получаемого рения расходуется на создание сплавов, обладающих особыми свойствами. Так, рений и его сплавы с молибденом и вольфрамом применяются в производстве электрических ламп и электровакуумных приборов - ведь они имеют больший срок службы и являются более прочными, чем вольфрам. Из сплавов вольфрама с семьдесят пятым элементом изготовляют термопары, которые можно использовать в интервале температур от 0 до 2 500 °C. Жаропрочные и тугоплавкие сплавы рения с вольфрамом, танталом, молибденом применяются при изготовлении некоторых ответственных деталей. Семьдесят пятый элемент используется при изготовлении нитей накала в масс-спектрометрах и ионных манометрах. Рений и некоторые его соединения служат катализаторами при окислении аммиака и метана, гидрировании этилена. Кроме того, из рения делают самоочищающиеся электрические контакты, а также этот редкий и весьма ценный элемент используется при изготовлении реактивных двигателей.

Биологические свойства

О биологических свойствах семьдесят пятого элемента известно очень мало. Возможно, данный факт связан с поздним открытием этого металла, и в дальнейшем человечество сможет сказать нечто более определенное по поводу биологической роли рения в живых организмах. Сейчас утверждается, что участие рения в биохимических процессах маловероятно.

Весьма слабо изучена токсичность рения и его соединений, известно лишь, что растворимые соединения рения мало токсичны. Пыль металлического рения не вызывает интоксикации, а при введении через органы дыхания приводит к слабо текущему фиброзу. Семиокись рения Re2O7 более токсична, чем металлическая пыль рения. При концентрации ее в воздухе 20 мг/м3 однократное действие вызывает острый процесс в легких; при концентрации 6 мг/м3 (при постоянном действии) появляется слабо выраженная интоксикация. Во всяком случае, при работе с соединениями рения следует быть осторожным. Экспериментальному токсикологическому изучению подвергались лишь перренаты калия и натрия и некоторые хлористые соединения рения. При этом, введенный в организм рений спустя 1-1,5 часа обнаруживается в органах, накапливаясь (подобно элементам VII группы) в щитовидной железе. Тем не менее, рений быстро выводится из организма: через сутки выводится 9,2 % от всего поступившего, спустя 16 суток - 99 %. Перренат калия не оказал токсического действия при внутрибрюшном введении лабораторным белым мышам в количестве 0,05-0,3 мг. Внутрибрюшное введение NaReO4 в количестве 900-1000 мг/кг вызывало смерть лабораторных крыс. У собак при внутривенном введении 62-86 мг NaReO4 наблюдалось кратковременное повышение артериального давления. Определенно большей токсичностью обладают хлориды рения.

На фоне этих скудных исследований токсикологии рения и его соединений куда важнее выглядят другие научные изыскания, связанные с семьдесят пятым элементом. Речь идет о разработках новейших технологий получения различных медицинских изотопов. Ведь уже известно, что достижения в области ядерной медицины позволяют не только осуществлять уникальную диагностику, но и излечивать тяжелые заболевания.

В этой связи особого внимания заслуживает рений-188. Этот изотоп относится к числу так называемых «волшебных пуль». Препараты на его основе, позволяют осуществлять радионуклидную диагностику новообразований скелета, метастаз опухолей различной локализации в кости, воспалительных заболеваний опорно-двигательного аппарата. Этот радионуклид имеет очень хорошие характеристики для терапии: период полураспада семнадцать часов, β-излучение с пробегом в ткани около 0,5 см, а наличие γ-излучения с энергией 155 кэВ позволяет с использованием γ-камер осуществлять «слежение» за радиофармпрепаратом. Весьма существенно, что помимо терапевтического действия радиофармпрепараты с рением-188 значительно уменьшают болевые синдромы при метастазах в скелете. Более того, применение терапевтических препаратов на основе рения-188 позволяет препятствовать тромбообразованию. И что самое главное - рений-188 не имеет аналогов за рубежом, является научной разработкой российских ученых, а следовательно, он более доступен.

Препарат получают в Радиевом институте имени В. Г. Хлопина с использованием генератора, где в качестве исходного радиоизотопа применяется 188W с периодом полураспада 69 дней. Вольфрам-188 образуется при облучении нейтронами изотопа вольфрама-186. Работы по созданию централизованного генератора 188Re на основе центробежного экстрактора в Радиевом институте были начаты в 1999 г. совместно с НИКИМТ. Исследования, проведенные на высокоактивных растворах, показали хорошие перспективы создания экстракционного генератора 188Re: выход рения составляет более 85 %; радиохимическая чистота более 99 %.

Своим именем семьдесят пятый элемент обязан реке Рейн (стоит отметить, что ни одной другой реке нашей планеты химики и физики не оказали столь высокой чести) и Рейнской области - родине Иды Ноддак (Такке). Впрочем, здесь же сам рений впервые и увидел свет - промышленное производство нового металла развернулось в начале 30-х годов в Германии, где были найдены молибденовые руды с высоким содержанием рения - сто грамм на тонну. Что касается якобы открытого супругами Ноддак сорок третьего элемента - «мазурия», то, считается, что своё имя он получил в честь Мазурской области - родины Вальтера Ноддака (на самом деле, Ноддак родился в Берлине, учился и работал в Берлинском университете). Открытие «мазурия» не было подтверждено, а в последствии этот элемент был синтезирован искусственно и получил название «технеций».

Возможно выбор имен совпадение, однако некоторые историки химии считают, что оба названия содержат большую долю национализма: рейнская область и мазурские озера оказались во время первой мировой войны местами крупных удачных для германских войск сражений. Вполне вероятно, что несуществующий элемент был назван в честь победы немецких войск в 1914 году над русской армией генерала Самсонова у Мазурских болот.

Известно, что существует рений-осмиевый метод определения возраста минералов. С его помощью был определен возраст молибденитов из месторождений Норвегии и Чили. Оказалось, что норвежские молибдениты в большинстве случаев образовались примерно 700-900 миллионов лет назад. Молибдениты Чили (из месторождения Сан-Антонио) намного моложе: их возраст всего 25 миллионов лет.

Нам хорошо известны такие способы борьбы с коррозией, как хромирование, никелирование, цинкование, однако, вы наверняка не слышали о ренировании, ведь процесс этот сравнительно новый, однако весьма действенный - тончайшие рениевые покрытия по стойкости не знают себе равных. Они надежно защищают различные детали от действия кислот, щелочей, морской воды, сернистых соединений и многих других опасных для металла веществ. Цистерны и баки, изготовленные из ренированных стальных листов, применяют, например, для перевозки соляной кислоты.

Ренирование позволяет в несколько раз продлить срок службы вольфрамовых нитей в электролампах, электронных трубках, электровакуумных приборах. После откачки воздуха в полости электролампы неизбежно остаются следы кислорода и водяных паров; они же всегда присутствуют и в газонаполненных лампах. На вольфрам эти нежелательные примеси действуют разрушающе, но если покрыть нити рениевой «рубашкой», то водород и пары воды уже не в силах причинить вольфраму вред. При этом расход рения совсем невелик: из одного грамма можно получить сотни метров ренированной вольфрамовой нити.

Особый интерес металлургов и металловедов вызывает «рениевый эффект» - благотворное влияние рения на свойства вольфрама и молибдена (Re повышает одновременно и прочность, и пластичность Mo и W). Данное явление было открыто в Англии в 1955 году, тем не менее, природа «рениевого эффекта» еще недостаточно изучена. Предполагается, что в процессе производства в вольфрам и молибден иногда проникает «инфекция» углерода. Поскольку в твердом состоянии эти металлы совершенно не растворяют углерод, ему ничего не остается, как расположиться в виде тончайших карбидных пленок по границам кристаллов. Именно эти пленки и делают металл хрупким. У рения же с углеродом иные «взаимоотношения»: если его добавить к вольфраму или молибдену, то ему удается удалить углерод с пограничных участков и перевести в твердый раствор, где тот практически безвреден.

Нашей стране уже известны истории попыток «сравнительно честного» отъёма ценных ресурсов. Не обошли стороной и столь редкий элемент, как рений. В 1929 году крупная западная фирма обратилась к директору одного из металлургических заводов Сибири с выгодным, как казалось, предложением - продать ей отвалы пустой породы, скопившиеся около заводской территории. Заподозрив подвох, директор завода распорядился провести экспертизу якобы пустой породы. И действительно, оказалось, что отвалы содержат редчайший металл рений, открытый за несколько лет до описываемых событий. Поскольку мировое производство рения измерялось в то время буквально граммами, цена на него была поистине фантастической!

Другой пример попыток подобного «изъятия» происходит в наше время - в 1992 году сотрудники Института экспериментальной минералогии и Института геологии рудных месторождений, производя режимное наблюдение на вулканах Южнокурильской гряды и на вершине вулкана Кудрявый на острове Итуруп в местах выхода вулканического газа, обнаружили новый минерал - рениит. Напоминающий молибденит, сульфид рения содержит до 80 % редкого металла, а ведь это уже заявка на возможность промышленного использования рениита для получения рения! И хотя сульфида рения в самом вулкане накопилось немного (10-15 тонн), однако учеными подсчитано, что ежегодно с газами вулкан выбрасывает в атмосферу до 20 тонн рения, а уж как уловить ценный металл из этих газов наука знает давно. Не связано ли это с новой волной территориальных претензий Японии?

История

Открытие периодического закона позволило предположить существование элементов, ранее не обнаруженных, но которые просто «должны» были существовать и занимать отведенные им места в таблице. Некоторые из таких элементов даже были подробно описаны: «экабор» (скандий), «экаалюминий» (галлий) и «экасилиций» (германий). Что касается недостающих элементов VII группы - аналогов марганца, то их существование в 1871 году предположил сам автор периодической системы - Д.И. Менделеев. Дмитрий Иванович назвал отсутствующие элементы № 43 и № 75 подгруппы марганца «экамарганцем» и «двимарганцем» (от санскритских «эка» - один и «дви» - два). Сообщения об открытии этих элементов (уралий, люций, плюраний, ильмений, ниппоний, дэвий) стали появляться довольно скоро, однако ни одно не подтверждалось на деле. Единственным исключением можно назвать дэвий, открытый русским ученым С. Керном и названный в честь знаменитого английского химика Г. Дэви. Этот элемент давал реакцию, которую и в наше время используют в аналитической химии для определения рения. Однако сообщение С. Керна не приняли всерьез, потому что повторить его опыты не удалось…

Период неопределенности продолжался довольно долго, пока поиском марганцевых эквивалентов не занялись немецкие ученые-химики Вальтер Ноддак и Ида Такке, ставшая позже супругой Ноддака. Прекрасно зная законы периодической системы, немецкие химики удостоверились в том, что найти элемент под номером 75 будет нелегко, ведь в природе элементы с нечетными атомными номерами распространены всегда меньше, чем их соседи слева и справа. Так как элементы № 74 и № 76 (вольфрам и осмий) довольно редки, то, следовало предположить, что элемент № 75 распространен еще меньше. Зная, что содержание осмия в земной коре составляет величину порядка 10-6 %, Вальтер и Ида Ноддак предположили, что для элемента № 75 следовало ожидать величины еще меньшей, примерно 10-7 %.

Поиски столь редкого элемента начались с изучения платиновых руд, а также редкоземельных минералов - колумбита и гадолинита. Правда, от платиновых руд вскоре пришлось отказаться - слишком дорогой материал для изучения, однако работы это не убавило - более доступных руд для исследования хватало. Супруги Ноддак и их помощник Отто Берг работали, не покладая рук: изо дня в день им приходилось выделять из каждого нового элемента доступные для рентгеноскопического исследования препараты, что требовало многократного повторения однообразных и долгих операций - растворения, выпаривания, выщелачивания, перекристаллизации. Три года тяжелой кропотливой работы, более 1 600 проверенных образцов, и вот, наконец, в рентгеновском спектре одной из фракций колумбита были обнаружены пять новых линий, принадлежащих элементу № 75! Новый элемент получил имя «рений» - в честь реки Рейн и Рейнской провинции, родины Иды Ноддак. Об открытии «двимарганца» группа немецких ученых во главе с Идой и Вальтером Ноддак сообщила в Нюрнберге в собрании немецких химиков 5 сентября 1925 года, а уже в следующем году они выделили из минерала молибденита MoS2 первые два миллиграмма рения.

Несколько месяцев спустя вслед за открытием супругов Ноддак чешский химик И. Друце и англичанин Ф. Лоринг сообщили об открытии элемента № 75 в марганцевом минерале пиролюзите МnO2. Кроме того, чешские ученые Я. Гейровский и В. Долейжек установили наличие следов рения в неочищенных марганцевых препаратах с помощью изобретенного Я. Гейровским полярографа, позже Долейжек подтвердил наличие нового элемента рентгенографическими исследованиями.

Таким образом, рений стал последним элементом, обнаруженным в природных минералах - в дальнейшем пустые клетки периодической системы заполнялись искусственно полученными элементами (с помощью ядерных реакций).

Нахождение в природе

Рений - редчайший и весьма сильно рассеянный элемент, по современным оценкам (по версии академика А.П. Виноградова) его кларк (среднее содержание в природе) в земной коре равен 7 10–8 % (по массе), что еще меньше, чем предполагалось ранее (1 10–7 %). Кларк рения меньше, чем кларк любого металла из группы платиноидов или лантаноидов, считающихся одними из самых редких. На самом деле, если не принимать во внимание кларки инертных газов в земной коре, то можно назвать рений самым редким из элементов со стабильными изотопами. Чтобы понять насколько этот элемент редкий лучше всего сравнить его с другими металлами, например, золота в природе в 5 раз больше, серебра в 100 раз больше, чем рения; вольфрам в 1 000 раз распространеннее семьдесят пятого элемента, а марганец в 900 000 раз!

Рений (за редкими исключениями) не образует собственных минералов, а лишь сопутствует минералам различных элементов - от повсеместно распространенного пирита до редких платиновых руд. Следы его находят даже в бурых углях. Собственные минералы рения (к примеру, джезказганит, Pb4Re3Mo3S16) настолько редки, что представляют не промышленный, а скорее научный интерес. Джезказганит был обнаружен в джезказганских медных и медно-свинцово-цинковых рудах, разрабатываемых вблизи казахского города Джезказган (современное название - Жезказган). Минерал представляет собой тонкие прожилки (вкрапления в породу) длиной не больше 0,1 мм; исследования советских ученых установили, что джезказганит содержит сульфид рения, а также сульфиды молибдена и свинца.

Самым богатым промышленным рений содержащим минералом является молибденит MoS2, в котором находят до 1,88 % рения, это легко объясняется ярко выраженным геохимическим сходством рения и молибдена: оба металла проявляют одинаково высокое сродство к сере, высшие галогениды молибдена и рения обладают повышенной летучестью и близкой реакционной способностью. Кроме того, ионные радиусы четырехзарядных ионов Re4+ и Mo4+ практически одинаковы. Однако молибденит не единственный минерал, содержащий семьдесят пятый элемент - довольно велико содержание рения в минералах гранитных пегматитов (цирконе, альвите, колумбите, танталите, гадолините и других), в которых рений заключен в виде тонко рассеянных сульфидов. Этот металл есть в медистых песчаниках (группа месторождений Джезказганского региона в Казахстане), медно-молибденовых и полиметаллических рудах, в колчеданах, он обнаружен и в минералах платины и вольфрама. Отмечается накопление рения, наряду с другими тяжелыми металлами, в битуминозных остатках.

Относительно велико содержание рения в метеоритном железе - 0,01 г/т, что значительно превышает кларк рения в земной коре. Зато в минералах своего аналога - марганца, рений почти не содержится! Причиной такого отсутствия является, скорее всего, заметное различие в радиусах ионов Mn2+, Mn3+ и Re4+. Казалось бы - рений находят во многих рудных месторождениях - следовательно, не так уж и редок этот элемент, однако еще не известно ни одного месторождения, промышленную ценность которого определял бы только рений. Почти всегда рения в таких рудах очень мало - от миллиграммов до нескольких граммов на тонну. Его повсеместное присутствие объясняется миграцией в земной коре. В подземных водах содержатся вещества, имеющие воздействие на минералы содержащие рений. Под влиянием этих веществ заключенный в них рений окисляется до Re2O7 (высший окисел, который образует сильную одноосновную кислоту HReO4). Этот оксид в свою очередь реагирует с оксидами и карбонатами щелочных металлов, вследствие чего образуются водорастворимые соли - перренаты. Вот почему рений отсутствует в окисленных рудах цветных металлов и присутствует в водах шахт и карьеров, где добывают руды многих металлов. В воде артезианских скважин и естественных водоемов, расположенных близ ренийсодержащих рудных месторождений, тоже находят следы этого элемента.

По предположению академика А. Е. Ферсмана, для рения характерно «тяготение» к тем зонам земного шара, которые прилегают к его ядру. Поэтому в будущем возможно открытие богатейшего рениевого месторождения где-нибудь в недрах нашей Земли. Считается, что первое место по запасам рения занимают США (62 % мировых запасов), второе место принадлежит Казахстану.

Применение

Вплоть до начала семидесятых годов двадцатого века спрос на рений был ниже предложения. Цены на этот металл из года в год оставались на одном уровне, а государства, производящие семьдесят пятый элемент не видели смысла в повышении производительности и продолжали выплавку рения на старом уровне - тонна, две в год. Мировая рениевая промышленность находилась в относительном покое, до тех самых пор, пока не началось освоение новых катализаторов нефтеперерабатывающей промышленностью. Опытные образцы рениево-платиновых катализаторов позволили намного увеличить выход бензинов с высоким октановым числом. Дальнейшие же исследования показали, что использование этих катализаторов вместо устаревших платиновых позволяет на 40-45 % увеличить пропускную способность установок. К тому же срок службы новых катализаторов в среднем в четыре раза больше, чем старых. С тех пор примерно 65 % производимого в мире рения идет на получение платинорениевых катализаторов для нефтеперерабатывающей промышленности (получение бензина с высоким октановым числом). Такой бурный всплеск потребности и интерес к редкому металлу вызвал рост цен и спрос на него в разы. Поскольку платина и рений весьма дороги, эти катализаторы регулярно, через 3-5 лет, подлежат восстановлению для вторичного использования. При этом потери металла не превышают 10 %.

Другая обширная область применения рения, некогда использовавшая большую долю производимого в мире металла - металлургия. Благодаря своим уникальным свойствам (очень высокая температура плавления, устойчивость к химическим реагентам и прочие) семьдесят пятый элемент частый компонент жаропрочных сплавов на основе вольфрама и молибдена, а также сплавов на основе никеля, хрома, титана и других элементов. Причем сплавы рения с другими тугоплавкими металлами (такими как вольфрам, молибден или тантал) имеющие высокие жаропрочные характеристики используются при изготовлении деталей сверхзвуковых самолетов и ракет.

Наиболее используемые сплавы вольфрама с 5, 20 или 27 % рения (ВР-5, ВР-20, ВР-27ВП) и молибдена - с 8, 20 и 47 % рения, а также молибден-вольфрам-рениевые сплавы. Такие сплавы высокопрочны, пластичны (и, следовательно, технологичны), хорошо свариваются. Изделия из них сохраняют свои свойства и формы в самых трудных условиях эксплуатации. Рений работает на морских судах и самолетах, в космических кораблях (сплав тантала с 2,5 % рения и 8 % вольфрама предназначен для изготовления теплозащитных экранов аппаратов, возвращающихся из космоса в атмосферу Земли) и в полярных экспедициях. Сплав никеля с рением, называемый «монокристаллическим», используется для изготовления деталей газовых турбин. Ведь именно такой сплав обладает большой стойкостью к высоким температурам и резким температурным перепадам, он выдерживает температуру до 1 200 °С, поэтому в турбине можно поддерживать стабильно высокую температуру, полностью сжигая горючее, так что при этом с выхлопными газами выбрасывается меньше токсичных веществ и сохраняется высокий КПД турбины. В настоящее время ни одна газовая турбина не изготавляется без использования ренийсодержащего жаропрочного сплава. Для атомной техники сплавы, содержащие рений (сплав вольфрама с 26 % рения) - перспективный конструкционный материал (оболочки ТВЭЛов и прочих деталей, работающих в реакторах при температурах от 1 650 до 3 000 °С).

Семьдесят пятый элемент стал важным материалом для электронной и электронно-вакуумной промышленности. Именно данные области полностью раскрывают потенциал этого металла и его сплавов. Особенно широко в этих отраслях использует рений Япония (65-75 % своего потребления). Из рения и сплавов на его основе делают нити накала, сетки, подогреватели катодов. Детали из сплавов рения есть в электронно-лучевых трубках, приемно-усилительных и генераторных лампах, в термоионных генераторах, в масс-спектрометрах и других приборах. Из сплавов содержащих рений делают, в частности, керны (опора, на которой вращается рамка прибора) измерительных приборов высших классов точности. Материал таких опор должен отвечать ряду строгих условий: высокая твердость, немагнитность, высокая коррозионная стойкость, малый износ в процессе эксплуатации. Всем этим условиям отвечает многокомпонентный сплав на кобальтовой основе 40 КНХМР, легированный 7 % рения. Этот же сплав используют для производства упругих элементов крутильных весов и гироскопических приборов.

Рений используют при изготовлении вольфрам-рениевых термопар, позволяющих измерять температуры до 2 600 °C. Такие термопары значительно превосходят применяемые в промышленности стандартные термопары из вольфрама и молибдена. Кроме того, рений является прекрасным материалом для электрических контактов, покрытий, рентгеновских трубок, ламп-вспышек и вакуумных ламп. Наконец, на реакции β-распада 187Re основан рений-осмиевый метод определения возраста горных пород и метеоритов.

Производство

Производственное освоение рения началось в Германии в 1929 году, тогда «мировое производство» этого металла составляло всего 3 г! Однако уже к 1940 году Германия обладала запасами в 200 кг рения, чего вполне хватало для мирового потребления тех лет. После начала второй мировой войны американцы начали извлекать рений из молибденовых концентратов и в 1943 году получили 4,5 кг собственного семьдесят пятого элемента. После окончания второй мировой войны число стран производителей рения резко возросло - к Германии и США добавились СССР, Англия, Франция, Бельгия и Швеция. Тем не менее, даже в наши дни производство рения значительно уступает производству многих редких металлов - добыча подобных распыленных элементов представляет даже при нынешнем уровне знания и при разнообразии приемов достаточно сложную задачу.

Любое рудное сырье, содержащее семьдесят пятый элемент - это комплексное сырье, в котором далеко не рений главное богатство, с чем, собственно, и связаны большие потери и без того скудного элемента рения. Основные сырьевые источники семьдесят пятого элемента рения - молибденитовые концентраты (содержание рения 0,01-0,04 %), медные концентраты некоторых месторождений (0,002-0,003 % рения), отходы от переработки медистых сланцев (например, свинцово-цинковые пыли, содержащие 0,04 % рения), а также сбросные воды гидрометаллургической переработки бедных молибденитовых концентратов (10-50 мг/л рения).

Дело в том, что способы извлечения рения во многом зависят от специфики технологии производства основных металлов, а чаще всего технологические схемы извлечения основных металлов и рения не совпадают, что приводит к потерям семьдесят пятого элемента. Так, при флотационном обогащении молибденовых и медно-молибденовых руд от 40 до 80 % бывшего в руде рения переходят в молибденовый концентрат, а в рениевые слитки, в конечном счете, превращается лишь незначительная часть этого металла, добываемая из уже переработанных отвалов. По подсчетам американских ученых из молибденовых концентратов богатых рением извлекается всего 6 % этого металла от общего содержания. Но и при флотационном обогащении медно-молибденовых руд рений не теряется, а всего лишь переходит в молибденовый концентрат, потери начинаются дальше - при обжиге концентратов и в процессе плавки.

Технология обработки молибденовых концентратов включает обязательный окислительный обжиг при 550...650° C, а при таких температурах, как мы хорошо знаем, активно начинает окисляться и рений, в основном до Re2O7 - рениевый ангидрид летуч, получается, что большое количество семьдесят пятого элемента просто «вылетает в трубу». На различных стадиях производства черновой меди рений также удаляется с отходящими газами. Получается, чтобы получить рений на молибденовых предприятиях необходимо, прежде всего, уловить его из уходящих газов. Для этого на заводах устанавливают сложные системы циклонов, скрубберров, электрофильтров. В итоге рений концентрируется в шламовых растворах, образующихся при очистке пылеуловительных систем. Если печные газы направляются на производство H2SO4, рений концентрируется в промывной кислоте электрофильтров.

Для извлечения рения из пыли и шламов применяют выщелачивание слабой серной кислотой или теплой водой с добавкой окислителя (МnО2). В случае неполной возгонки рения (в многоподовых печах она составляет всего 50...60 %, в печах кипящего слоя - почти 96 %) при обжиге молибденитовых концентратов, часть его остается в металлическом огарке и затем переходит в аммиачные или содовые растворы выщелачивания огарков. Таким образом, источниками получения рения при переработке молибденитовых концентратов могут служить сернокислотные растворы мокрых систем пылеулавливания и маточные растворы после гидрометаллургической переработки огарков.

Из растворов рений извлекают в основном сорбционными (с применением слабо- и сильноосновных ионитов) и экстракционными (экстр-агентами выступают триалкиламин, трибутилфосфат и прочие соединения) методами. В результате десорбции или реэкстракции растворами NH3 образуется NH4ReO4, восстановлением которого водородом получают порошок рения:

2NH4ReO4 + 7H2 → 2Re + 2NH3 + 8H2O

Восстановление осуществляют в две стадии: первая протекает при 300-350 °С, вторая - при 700-800 °С. Полученный порошок прессуют в штабики, которые спекают при 1 200-1 300 °С, а затем при 2 700-2 850 °С в токе водорода. Спеченные штабики уплотняют ковкой или прокаткой на холоду с промежуточными отжигами. Для получения компактного рения применяют также плавку в электроннолучевых печах.

В последнее время разрабатываются новые способы гидрометаллургической переработки концентратов содержащих рений. Такие методы более перспективны в основном потому, что нет тех огромных потерь рения, которые неизбежны в пирометаллургии. Уже сейчас семьдесят пятый элемент извлекают из концентратов различными растворами - в зависимости от состава концентрата, а из этих растворов - жидкими экстр-агентами или в ионнобменных колоннах.

Физические свойства

Рений - серебристо-серый металл, своим внешним видом напоминающий сталь или платину. Порошок металла - чёрного или темно-серого цвета в зависимости от дисперсности. Рений кристаллизуется в гексагональной плотноупакованной решетке с параметрами а = 2,760 A, с = 4,458 A, z = 2. Атомный радиус 1,373 A, ионный радиус Re7+ 0,56 A. В полном соответствии с положением в таблице Менделеева, рений во многом похож на марганец. В основном эта схожесть на уровне строения атомов - имея в наружном электронном слое атома всего два электрона, марганец и его аналоги не способны присоединять электроны и, в отличие от галогенов, соединений с водородом не образуют. Однако у семьдесят пятого элемента больше отличий - рений четвёртый в списке элементов с наибольшей плотностью в твёрдом состоянии (21,02 г/см3), то есть тяжелее этого элемента только осмий (22,5 г/см3), иридий (22,4 г/см3) и платина (21,5 г/см3).

Вообще по своим физическим свойствам рений схож с тугоплавкими металлами VI группы вольфрамом и молибденом, а также с металлами платиновой группы. Кроме близости ряда физических характеристик с молибденом его роднит и близость атомного и ионных радиусов. Например, радиусы ионов Re4+ и Мо4+ отличаются всего на 0,04 ангстрема. Сульфиды MoS2 и ReS2 образуют к тому же однотипные кристаллические решетки. Именно этими причинами объясняют геохимическую связь рения с молибденом. Рений лишь немного тяжелее вольфрама, плотность которого 19,32 г/см3, по температуре плавления (3 180 °С) он уступает вольфраму (3 400 °С), однако температуры кипения обоих металлов настолько высоки, что их не могли с точностью определить долгое время - для рения она порядка 5 870 °С, для вольфрама 5 900 °С. Однако существует и немаловажное различие - рений гораздо пластичнее вольфрама: его можно прокатывать, ковать, вытягивать в проволоку при обычных условиях.

Рений пластичен в литом и рекристаллизованном состоянии и деформируется на холоде. Только вот пластичность рения, как и многих других металлов, во многом зависит от чистоты. Известно, что примеси кальция, железа, никеля, алюминия и других элементов снижают пластичность рения. Модуль упругости семьдесят пятого элемента 470 Гн/м2, или 47 000 кгс/мм2 (выше, чем у других металлов, за исключением осмия и иридия), что обуславливает высокое сопротивление деформации и быстрый наклеп при обработке давлением. Для восстановления пластичности и снятия наклепа рений отжигают в водороде, инертном газе или вакууме.

Еще одно важное свойство рения - высокая жаропрочность. Рений отличается высокой длительной прочностью при температурах 500-2 000 °С, он выдерживает многократные нагревы и охлаждения без потери прочностных показателей. Его прочность при температуре до 2 000 °C выше, чем у вольфрама, и значительно превосходит прочность молибдена и ниобия. Твердость по Виккерсу отожженного рения 2 450 МПа, деформированного - 7 840 МПа. Удельное объемное электросопротивление рения при температуре 20 °С составляет 19,3 10-6 ом см, что в четыре раза больше, чем у вольфрама и молибдена. Термический коэффициент линейного расширения для рения равен 6,7 10-6 (в интервале температур от 20 до 500° С); удельная теплоемкость рения 153 дж/(кг К) или 0,03653 кал/(г град) (при температурах от 0 до 1 200 °С); теплопроводность 48,0 Вт/(м К) при температуре 25° С и 46,6 Вт/(м К) при температуре 100° С. Температура перехода рения в состояние сверхпроводимости 1,699 К; работа выхода электрона 4,80 эВ. Рений парамагнитен, удельная магнитная восприимчивость этого элемента составляет +0,368 10-6 (при температуре 20,2° С).

Химические свойства

У атома рения семь внешних электронов; конфигурация высших энергетических уровней 5d56s2. По своим химическим свойствам - особенно стойкости к агрессивным средам - рений напоминает металлы платиновой группы. В компактном состоянии (в виде слитков, прессованных штабиков) рений устойчив на воздухе при обычных температурах. При неизменности благоприятных условий металл может годами не тускнеть на воздухе, таким же «результатом» могут похвастать лишь некоторые благородные металлы: золото и платина. При температурах выше 300° C начинает наблюдаться окисление металла с образованием оксидов (ReO3, Re2O7), интенсивно этот процесс протекает при температурах выше 600 °C, а в атмосфере кислорода при нагревании свыше 400 °С металл сгорает. Появление при этом белого дыма свидетельствует об образовании семиокиси рения Re2O7, которая очень летуча. Порошкообразный рений окисляется во влажном воздухе до рениевой кислоты HReO4:

4Re + 7O2 + 2H2O → 4HReO4

Рений более устойчив к окислению, чем вольфрам и молибден, ведь он не реагирует непосредственно с азотом и водородом; порошок рения лишь адсорбирует водород. Семьдесят пятый элемент не растворяется в соляной и плавиковой кислотах любых концентраций на холоде и при нагревании до 100° С и выше. В азотной кислоте, горячей концентрированной серной кислоте, в пероксиде водорода металл растворяется во всех случаях с образованием рениевой кислоты:

3Re + 7HNO3 → 3HReO4 + 7NO + 2H2O

2Re + 7H2SO4 → 2HReO4 + 7SO2 + 6H2O

2Re + 7H2O2 → 2HReO4 + 6H2O

В растворах щелочей при нагревании рений медленно корродирует, расплавленные щелочи растворяют его быстро (особенно в присутствии окислителей - Na2O2, KNO2 и даже O2), давая метаперренаты (VII) MReO4.

Рений энергично взаимодействует с галогенами, причем сила взаимодействия уменьшается от фтора к брому. При этом не образуется соединений рения высшей валентности. При нагревании металлический рений взаимодействует с фтором, хлором, серой, селеном, бромом:

Re + 3F2 → ReF6

2Re + 5Cl2 → 2ReCl5

Re + 2S → ReS2

С фтором при нагревании образуется смесь ReF5, ReF6 и ReF7, с хлором - ReCl5 и ReCl4, с бромом - ReBr5, с йодом рений не реагирует. Кроме того, даже при повышенной температуре компактный рений не реагирует с оксидом углерода (II), метаном и углеродом (взаимодействие порошков рения и графита происходит при 1 000 °С и давлении 920 кПа, в итоге получается карбид ReC). С фосфором выше 750-800 °С рений образует фосфиды ReP3, ReP2, ReP и Re2P, с мышьяком - арсенид ReAs2,1-2,3, с кремнием при спекании - силициды ReSi, Re3Si, Re2Si, а также ReSi2 (полупроводник). Пары серы при 700-800 °С дают с рением сульфид ReS2. Аналогично сульфидам получают селениды Re2Se7 и ReSe2.

Для рения известны все валентные состояния от +7 до -1, что обусловливает многочисленность и разнообразие его соединений. Известно относительно небольшое число соединений одно, двух, трех, пяти и шестивалентного рения, все они малоустойчивы. Наиболее устойчивы соединения четырех- и семивалентного рения. К наиболее важным из них стоит отнести диоксид рения, ReO2, нелетучий коричнево-черный кристаллический порошок с металлическим типом проводимости, устойчивый на воздухе при комнатной температуре. ReO2 является промежуточным продуктом при получении рения. Триоксид рения, ReO3, кристаллы темно-красного цвета с металлическим блеском. Оксид рения Re2O7, или рениевый ангидрид, светло-желтые, буроватые кристаллы. Хорошо растворяется в воде, спирте, ацетоне. При растворении в воде дает бесцветный раствор рениевой кислоты. HReO4 - сильная кислота, в свободном виде не выделена.

Серебристо-белый метал с атомной массой 186.2, валентностью 3, 4, 6, 7, плотностью 21 0 г / см3, с температурой плавления 3170 C, с удельным электросопротивлением 0,193 Ом-ми.

Металл редкий и дорогой. Из него делают лишь особо ответственные и, как правило, малогабаритные детали.

относится к довольно редким и рассеянным элементам земной коры. Значительные его концентрации довольно редки - максимальная (2 - 3 %) обнаружена в минералах молибденита. Молибдениты встречаются в кварцевых рудных жилах и отдельных пегматитах, в которых первичный осмий практически отсутствует. Таким образом, в молибденитах накапливается только радиогенный осмий.

не растворяется ни на холоду, ни при нагревании в соляной и фтористоводородной кислотах.

Находящийся в виде порошка или мелкой стружки, можно сплавить со щелочами.

не встречается в природе в виде самостоятельных минералов, однако он в очень незначительных количествах встречается в различных рудах и минералах других элементов.

в обычных условиях не взаимодействует с серной кислотой, а марганец не реагирует с пероксидом водорода.

Свойства

получают спеканием в вакууме в виде штабиков, который затем подвергают холодной прокатке.

присутствует в разнообразных природных и промышленных материалах, которые различаются между собой числом и содержанием сопутствующих элементов. Концентрация рения в природных и промышленных объектах изменяется в широком диапазоне и составляет от 10 - 7 до десятков процентов. Для определения рения в природных и промышленных объектах применяются различные методы: химические, физико-химические и физические. Из-за высокой летучести соединений рения и малого его содержания в природных материалах необходимо уделять особое внимание операциям, связанным с разложением проб, выпариванием растворов и его выделением.

выделяют из отходов переработки руд молибдена и других металлов, причем вследствие очень малого содержания Re предварительно проводят ряд операций концентрирования.

выделяется в виде мелкого пирофорного порошка, который отделяют от КОН промыванием водой. Компактный металл получают методами порошковой металлургии. Ежегодное производство рения измеряется тоннами.

определяют методом добавок. Результаты анализа совпадают с данными потенциометрического титрования.

Полученный методом горячего вакуумного прессования, имеет мелкозернистую структуру. На границе раздела рений-графит промежуточных фаз не обнаружено. Об отсутствии взаимодействия между графитом и рением при давлении 250 кгс / см2 и температуре 2100 С свидетельствуют и измерения микротвердости рения. Такое высокое значение может быть объяснено значительной деформацией рения, а также наличием в нем твердого раствора углерода.

может быть извлечен и из другого полупродукта молибденового производства - из растворов, получаемых при выщелачивании молибденового огарка.

не имеет собственных минералов. Наиболее интересными носителями концентраций рения являются высокотемпературные сульфиды медно-молибденовых руд. Поддается прокатке и вытяжке только при красном калении.

способен сплавляться со многими металлами, причем сплавы в большинстве случаев обладают большой твердостью. Использование рения в технике все время расширяется благодаря его свойствам.

в растворах обычно находится в семивалентном состоянии. Поэтому во многих случаях перед определением рения анализируемый раствор обрабатывают восстановителем, При этом основной трудностью является восстановление рения до определенного валентного состояния.

растворяется в азотной кислоте, образуя HReO4, с разбавленными соляной и серной кислотами не взаимодействует.

Нанесенный на оксид алюминия без платины, восстанавливается до металлического состояния более легко при значительных концентрациях и трудно при малых. Это может быть обусловлено высокой дисперсностью низкопроцентных рениевых контактов, при которой возможно сильное взаимодействие рения и его оксидов с акцепторными участками поверхности носителя, что и препятствует восстановлению.

Применение

применяется в вакуумных электронных и полупроводниковых приборах. Используется в качестве высокоизбирательного катализатора в процессах гидрирования и дегидрирования. Антитела, меченные рением, использовались в экспериментах по лечению аденокарциномы ободочной кишки, легких и яичника. применяется в медицинских инструментах, оборудовании для получения глубокого вакуума и в сплавах для изготовления электрических контактов и термопар. Кроме того, его применяют для покрытия ювелирных изделий.

используется в радиоэлектронике, при производстве специальных сплавов. Рениевые катализаторы весьма эффективны для процессов гидрирования.

может найти применение в самых различных областях, однако из-за высокой стоимости и редкости в настоящее время этот металл не применяется в широком промышленном масштабе. Описан сплав, содержащий вольфрам , молибден и рений, из которого изготовляются электрические контакты.

и сплавы на его основе также применяются для нанесения покрытий на металлы.

Являющийся относительно редким материалом, в последние годы находит применение в качестве технологического материала в различных областях. Он пpименяется для изготовления электрических контактов, термопар, катодов.

Применение рения - очень дорогого и редкого металла может быть оправдано только в том случае, если он обеспечивает значительные преимущества перед другими металлами и сплавами. В настоящее время не ставится вопрос об использовании рения для работы в окислительных средах.

Применение рения ограничено малой доступностью металла. И все же в настоящее время рений используют в сплавах с платиной для термопар. Рений применяют для изготовления нитей накаливания электрических ламп, он входит в состав сплавов, из которых делают перья для автоматических ручек.

Применение рения пока еще ограничено малым масштабом его производства, но он относится к перспективным металлам, обладая химической инертностью, хорошими механическими свойствами и высокой температурой плавления.

Высокие цены на рений ограничивают возможность его промышленного использования. Поэтому применение рения ограничивается изготовлением изделий, где небольшие количества металла обеспечивают высокие эксплуатационные характеристики.

В последнее время значительно возрос интерес к рению, его сплавам и соединениям в связи с их уникальными физическими и химическими свойствами, позволяющими создавать материалы, отвечающие высоким требованиям различных областей новой техники. Широко осваивается применение рения и его соединений в качестве катализаторов в химической промышленности.

Они распадаются в основном на два класса, а именно: патенты по применению рения в качестве катализатора и патенты по использованию некоторых свойств рения и его сплавов для электротехнических и других целей.

Влияние легирования рением на деформационное поведение и механические свойства гетерофазных монокристаллов легированного жаропрочного сплава на основе №3А1

Г.П. Грабовецкая, Ю.Р. Колобов, В.П. Бунтушкин1, Э.В. Козлов2

1 Институт физики прочности и материаловедения СО РАН, Томск, 634021, Россия 2 Всероссийский институт авиационных материалов, Москва, 107005, Россия 3 Томский государственной архитектурно-строительный университет, Томск, 634003, Россия

Методами растровой электронной микроскопии изучены структура и фазовый состав монокристаллов <001 > сплава типа ВКНА. Исследовано влияние легирования рением на деформационное поведение и температурную зависимость механических свойств монокристаллов в интервале температур 293-1373 К. Обсуждаются возможные физические причины изменения характера деформационного поведения легированных рением монокристаллов <001 > сплавов типа ВКНА в интервале температур 2931 073 К.

The effect of Re alloying on deformation behavior and mechanical properties of heterophase single crystals of doped high-temperature Ni3Al-based alloy

G.P. Grabovetskaya, Yu.R. Kolobov, V.P. Buntushkin, and E.V Kozlov

The structure and phase composition of single crystals<001> of VKHA-type alloy have been investigated by scanning electron microscopy. The effect of Re alloying on deformation behavior and temperature dependence of mechanical properties of above-mentioned single crystals in the temperature range of 293-1 373 K has been examined. Consideration are given to possible physical reasons of changing deformation behavior characteristics of Re alloying of single crystals <001> of VKHA-type alloy in the temperature range of 293-1 073 K.

1. Введение

Перспективными материалами для лопаток турбин

в настоящее время являются поли- и монокристаллы жаропрочных (у + у") никелевых сплавов с большой

объемной долей -фазы (интерметаллид №3А1) со сверх-

структурой L12. Такие сплавы обладают высокой жаропрочностью и могут длительное время функционировать при высоких температурах. Поликристаллические сплавы на основе №3А1 достаточно хорошо исследованы

В частности установлено, что в таких материалах процессы деформации и разрушения при высокотемпературной ползучести локализуются на границах зерен. Это приводит к зарождению и диффузионно-контролируемому росту зернограничных клиновидных трещин

При одновременном развитии проскальзывания по границам зерен . Отсутствие границ зерен в монокристаллах указанных сплавов устраняет отрицательные последствия зернограничных процессов и позволяет су-

щественно улучшить эксплуатационные характеристики рассматриваемых сплавов.

В работах показано, что в процессе деформации монокристаллов (у + у/)-сплавов при достижении касательными напряжениями в действующей системе скольжения критической величины зарождение скольжения имеет место на межфазных границах у/у". Скольжение развивается вначале в у-фазе, а затем происходит прорезание частиц высокопрочной у"-фазы дислокациями. В дальнейшем с увеличением деформации скольжение развивается также и у"-фазе. При этом оно преимущественно локализуется в менее прочной у-фазе. Отсюда, чем меньше в объеме у-фазы, тем больше скольжения в -фазе и тем выше сопротивление деформированию монокристалла (у + у")-сплава. Другой способ увеличения прочности монокристаллов (у + у")-сплавов - легирование элементами, увеличивающими прочностные характеристики у- и у7-фаз.

© Грабовецкая Г.П., Колобов Ю.Р, Бунтушкин В.П., Козлов Э.В., 2004

В настоящей работе проведено исследование влияния легирования рением на деформационное поведение и температурную зависимость механических свойств сложнолегированных монокристаллов сплава на основе Ni3Al.

2. Материал и методика испытаний

В качестве материала для исследования использовали монокристаллы <001 > сплава на основе Ni3Al, содержащего элементы Cr, Ti, W, Mo, Hf, C, суммарное количество которых не превышало 14 вес. % (сплав типа ВКНА).

Микроструктуру сплава исследовали с помощью растрового (Philips SEM 515) микроскопа. Фазовый состав определяли методами рентгеноструктурного анализа на установке ДРОН-2.

Механические испытания на растяжение проводили на модернизированной установке ПВ-3012М в интервале температур 293-1373 K со скоростью 3.3*10-3 с1. Образцы для механических испытаний в форме двойной лопатки с размерами рабочей части 10x2.5x1 мм вырезали электроискровым способом. Перед испытанием с поверхностей образцов удаляли слой толщиной около 100 мкм механической шлифовкой и электролитической полировкой.

3. Результаты эксперимента и их обсуждение

Исследования структуры показали, что в исходном состоянии (состояние 1) монокристаллы <001 > сплава

типа ВКНА содержит две фазы-у и у7. В объеме сплава наблюдаются крупные выделения неправильной формы у"-фазы размерами 30-100 мкм и мелкодисперсная смесь пластин у7- и у-фаз, размерами порядка нескольких микрометров в длину и ~ 1 мкм в ширину (рис. 1, а). Основной объем занимает Y-фаза (-90 %) - твердый раствор на основе Ni3Al. При этом объемная доля крупных выделений Y-фазы составляет -22 %.

Введение в сплав небольшого (менее 2 вес. %) коли-

чества рения (состояние 2) приводит к появлению в

объеме монокристаллов третьей фазы - А1^е. Однако ее объемная доля не превышает 0.5 %. Основной объем материала по-прежнему занимает у7-фаза (-75 %). При этом объемная доля крупных выделений у7-фазы снижается до 10 %, а их размеры до 5-30 мкм (рис. 1, б).

На рис. 2, 3 представлены типичные кривые течения и температурная зависимость механических свойств при растяжении монокристаллов <001 > сплава ВКНА в состоянии 1 в интервале температур 293-1 373 К. Из рис. 2 видно, что на кривых течения указанных монокристаллов при температурах ниже 1073 К наблюдается протяженная стадия деформационного упрочнения с высоким коэффициентом деформационного упрочнения, что характерно для множественного скольжения в октаэдрических плоскостях монокристаллов со сверхструктурой L12 . Такой характер скольжения подтверждается и наличием на предварительно полированной поверхности монокристаллов <001 > сплава типа ВКНА в состоянии 1 после испытаний в интервале температур 293-1 073 К тонких и/или грубых следов скольжения в двух взаимно перпендикулярных системах скольжения, которые проходят через обе фазы не прерываясь.

На кривых течения монокристаллов <001 > сплава типа ВКНА в состоянии 1 при температурах 1 273 и 1373 К наблюдается площадка или острый зуб текучести, за которым следует протяженная стадия деформационного упрочнения с низким коэффициентом деформационного упрочнения. Такой тип кривых растяжения характерен для монокристаллов со сверхструктурой L12 в случае, если деформация осуществляется скольжением дислокаций в плоскости куба. На предварительно полированной поверхности образцов после испытания при температурах выше 1073 К следы скольжения не наблюдаются, что характерно для кубического скольжения в монокристаллах <001 > интерметаллида №3А1 . Вблизи места разрушения появляются трещины. Они располагаются по границам раздела крупных денд-ритов у7-фазы и мелкодисперсной смеси (у + у7)-фаз. Плотность трещин р не высока. Например, после испы-

Рис. 1. Структура монокристаллов сплава ВКНА в состояниях 1 (а) и 2 (б)

Деформация, %

Рис. 2. Кривые течения монокристаллов <001> сплава ВКНА в состоянии 1, рассчитанные в приближении равномерного удлинения: 293 (1); 873 (2); 1073 (3); 1273 (4); 1373 К (5)

Температура, К

Рис. 4. Зависимость величины предела прочности (1), предела текучести (2) и деформации до разрушения (3) от температуры испытания монокристаллов <001 > сплава типа ВКНА в состоянии 2

тания при 1373 К р составляет -10 мм-2. Длина трещин колеблется от 20 до 150 мкм.

Особые кривые течения для монокристаллов <001 > сплава типа ВКНА в состоянии 1 наблюдаются при температуре 1 073 К. Для этой температуры характерна очень короткая стадия деформационного упрочнения с максимальным коэффициентом деформационного упрочнения, которая сменяется стадией разупрочнения. На поверхности образцов после растяжения при температуре 1073 К наблюдаются как следы скольжения в двух взаимно перпендикулярных системах скольжения, так и трещины.

Из рис. 3 видно, что для монокристаллов < 001 > сплава типа ВКНА в состоянии 1 характерно монотонное увеличение предела текучести а0 2 в интервале температур 293-1 073 К, а затем после достижения максимума в при температуре, близкой к 1 073 К, его резкое падение. Пластичность монокристаллов <001 > сплава

типа ВКНА в состоянии 1 с увеличением температуры уменьшается, достигает минимума при температуре 1073 К, а затем увеличивается. Величина предела прочности ав монокристаллов <001 > сплава типа ВКНА в состоянии 1 в интервале температур 293-873 К практически не изменяется. При увеличении температуры ав вначале слабо увеличивается и, достигая максимума при 1073 К, резко падает.

Таким образом, температурная зависимость деформационного поведения, прочностных и пластических характеристик монокристаллов <001 > сплава типа ВКНА в состоянии 1 аналогична аномальной зависимости таковых для монокристаллов интерметаллида №3А1 .

Легирование рением приводит к существенному повышению значений а 02 и а в монокристаллов <001 > сплава типа ВКНА в интервале температур от комнатной до 873 К (рис. 4), что может быть связано с твердо-

Рис. 3. Зависимость величины предела прочности (1), предела теку- Рис. 5. Кривые течения монокристаллов <001> сплава ВКНА в со-

чести (2) и деформации до разрушения (3) от температуры испытания стоянии 2, рассчитанные в приближении равномерного удлинения:

монокристаллов <001> сплава типа ВКНА в состоянии 1 293 (1); 1073 (2); 1173 (3); 1273 (4); 1373 К (5)

растворным упрочнением . При этом в указанном температурном интервале значения а0 2 и ав практически постоянны. При температурах выше 873 К значения а02 и а в монокристаллов <001 > сплава типа ВКНА в состоянии 2 резко уменьшаются до значений, соответствующих состоянию 1. Величина 8 монокристаллов <001 > сплава типа ВКНА при легировании рением наоборот понижается по сравнению с соответствующими значениями 8 для состояния 1. Однако во всем исследованном интервале температур она монотонно увеличивается с ростом температуры от 16 до 33 % (рис. 4).

На рис. 5 представлены типичные кривые течения при растяжении монокристаллов <001 > сплава типа ВКНА в состоянии 2 в интервале температур 2931373 К. Из рис. 5 видно, что на кривой течения указанных монокристаллов при комнатной температуре наблюдается протяженная стадия деформационного упрочнения с большим коэффициентом деформационного упрочнения, чем соответствующий состоянию 1. С увеличением температуры испытания протяженность стадии деформационного упрочнения монокристаллов <001 > сплава типа ВКНА в состоянии 2 монотонно увеличивается, а коэффициент деформационного упрочнения монотонно уменьшается. В то время как коэффициент деформационного упрочнения для монокристаллов <001 > сплава типа ВКНА в состоянии 1 с ростом температуры изменяется по кривой с максимумом (рис. 2).

На предварительно полированной поверхности монокристаллов <001 > сплава ВКНА в состоянии 2, как и на поверхности монокристаллов <001 > сплава типа ВКНА в состоянии 1, после растяжения в интервале температур 293-1073 К имеются тонкие и/или грубые следы скольжения в двух взаимно перпендикулярных системах скольжения, а после испытания при температурах выше 1073 следы скольжения отсутствуют. При этом плотность и длина трещин на поверхности вблизи места разрушения в монокристаллах <001 > сплава ВКНА в состоянии 2 меньше, чем в состоянии 1. Так, после растяжения при 1373 К плотность трещин на поверхности монокристаллов <001 > сплава ВКНА в состоянии 2 составляет -3 мм-2, а длина трещин колеблется от 15 до 30 мкм.

Таким образом, приведенные данные показывают, что легирование рением приводит к качественному изменению деформационного поведения монокристаллов <001 > сплавов типа ВКНА в интервале температур 2931073 К.

Аномальная зависимость деформационного поведения и прочностных характеристик интерметаллида №3А1 от температуры, в соответствии с , связана с образованием в процессе деформации в монокристаллах со сверхструктурой L12 термоактивированных дислокационных барьеров типа Кира-Вильсдорфа, кото-

рые в определенном температурном интервале практически не разрушаются. Дислокационные барьеры типа Кира-Вильсдорфа - это две расщепленные сверхчас-тичные дислокации, связанные между собой полосой антифазной границы в плоскости куба. Энергия активации образования и разрушения указанных барьеров в значительной степени определяется энергиями антифазной границы и дефекта упаковки. Известно , что величины энергий антифазной границы и дефекта упаковки интерметаллида Ni3Al существенно зависят от типа и количества легирующих элементов. Отсюда можно предполагать, что изменение характера температурных зависимостей значений ст02, ств и 8 монокристаллов <001 > сплавов типа ВКНА при легировании рением связано с изменением величин энергий антифаз-ной границы и дефекта упаковки в Y-фазе.

4. Заключение

Таким образом, легирование рением приводит к изменению характера деформационного поведения монокристаллов <001 > сплавов типа ВКНА в интервале температур 293-1073 K. При этом наблюдается повышение коэффициентов деформационного упрочнения и прочностных характеристик указанных монокристаллов при сохранении удовлетворительной пластичности.

Литература

1. Портной К.И., Бунтушкин В.П., Мелимевкер ОД. Конструкционный сплав на основе интерметаллида Ni3Al // МиТОМ. - 1982. -№ 6. - С. 23-26.

2. Колобов Ю.Р. Диффузионно-контролируемые процессы на грани-

цах зерен и пластичность металлических поликристаллов. - Новосибирск: Наука, 1998. - 173 с.

3. Колобов Ю.Р., Касымов М.К., Афанасьев Н.И. Исследование зако-

номерностей и механизмов высокотемпературного разрушения легированного интерметаллида // ФММ. - 1989. - Т. 66. - Вып. 5. -С. 987-992.

4. Грабовецкая Г.П., Зверев И.К., Колобов Ю.Р. Развитие пластической деформации и разрушения при ползучести легированных сплавов на основе Ni3Al с различным содержанием бора // ФММ. -1994. - Т. 7. - Вып. 3. - С. 152-158.

5. Шалин Р.Е., Светлов И.Л., Качанов Е.Б. и др. Монокристаллы никелевых жаропрочных сплавов. - М.: Машиностроение, 1997. -333 с.

6. Пуарье Ж.П. Высокотемпературная ползучесть кристаллических тел. - М.: Металлургия, 1982. - 272 с.

7. Каблов Е.Н., Голубовский Е.Р. Жаропрочность никелевых сплавов. - М.: Машиностроение, 1998. - 463 с.

8. Попов Л.Е., Конева Н.А., Терешко И.В. Деформационное упрочнение упорядоченных сплавов. - М.: Металлургия, 1979. -255 с.

9. Гринберг Б.Ф., Иванов М.А. Интерметаллиды: микроструктура, деформационное поведение. - Екатеринбург: НИСО УрО РАН, 2002. - 359 с.

10. ThorntonP.H., DaviesP.G., Johnston T.I. The temperature dependence of the flow stress of the Y phase based upon Ni3Al // Metallurgical Transactions. - 1970. - No. 1. - P. 207-212.

11. Liu C.T, Pope D.P. Ni3Al and its alloys // Intermetallic Compounds. -1994. - V. 2. - P. 17-51.

12. Vbissere P. Weak-beam study of dislocations moving on {100} planes at 800 °C in Ni3Al // Philos. Mag. - 1984. - V. 50A. - P. 189-303.

Д. И. Менделеев в 1869 г. предсказал существование и свойства двух эле­ментов VII группы - аналогов марганца, которые предварительно назвал "эка- марганец" и "дви-марганец". Они соответствуют известным в настоящее время элементам - технецию (порядковый номер 43) и рению (порядковый номер 75).

В последующие 53 года многие исследователи сообщали об открытии аналогов марганца, но без убедительных оснований. Теперь мы знаем, что поиски эле­мента №43 в природных соединениях не могли увенчаться успехом, так как он неустойчив. Лишь в 1937 г. этот элемент был получен искусственно Э. Сегре и К. Пёрье путем бомбардировки ядер молибдена дейтронами я назван технецием (от греческого "техно" - искусственный).

В 1922 г. немецкие химики Вальтер и Ида Ноддаки начали систематические поиски аналогов марганца в различных минералах. Из 1 кг колумбита они выде­лили 0,2 г продукта, обогащенного молибденом, вольфрамом, рутением и осми­ем. В этом продукте по характеристическим рентгеновским спектрам был обна­ружен элемент с порядковым номером 75. О своем открытии Ноддаки сообщили в 1925 г. и назвали элемент рением. Позже, в 1927 г., Ноддаки установили, что в значительных концентрациях (до сотых долей процента) рений содержится в молибдените, из которого элемент был выделен в количествах, позволивших изучить химические свойства его соединений и получить металл.

Производство рения и его соединений в небольших количествах впервые воз - никло в Германии в 1930 г. на Мансфельдском заводе, где рений извлекали из печных настылей, образующихся при плавке медистых сланцев, содержащих при­месь молибденита. В СССР производство рения возникло в 1948 г.

Свойства рения

Рений - тугоплавкий тяжелый металл, по внешнему виду похож на сталь. Не­которые физические свойства рения приведены ниже:

Атомный номер 75

Атомная масса 186,31

Тип и периоды решетки. . . . Гексагональная,

Плотноупакованная а = 0,276, с = 0,445 нм

TOC \o "1-3" \h \z Плотность, г/см3 21,0

Температура, °С:

Плавления........ 3180±20

Кипения ~5900

Удельная теплоемкость средняя при

0-1200 °С, Дж/(г" °С) .... 0,153

Удельное электросопротивление

Р *10«, ОМ"см 19,8

Температура перехода в состояние

Сверхпроводимости, К. . . . 1,7

Работа выхода электронов, зВ 4,8 Сечение захвата тепловых нейтронов

П" 1024, см2 85

Твердость НВ отожженного металла, МПа 2000 Временное сопротивление (кованые и

Затем отожженные прутки) бв, МПа 1155

Модуль упругости Е, ГПа. . . 470

По температуре плавления рений занимает второе место среди металлов, ус­тупая лишь вольфраму, а по плотности - четвертое (после осмия, иридия и платины). Удельное электросопротивление рения почти в 4 раза выше, чем вольфрама и молибдена.

В отличие от вольфрама рений пластичен в литом и рекристаллизованном со­стоянии и можеть быть деформирован на холоду. Вследствие высокого модуля упругости после небольшой деформации твердость рения сильно возрастает - проявляется сильный наклеп. Однако после отжига в защитной среде или в ва­кууме металл вновь приобретает пластичность.

Изделия из рения (в отличие от изделий из вольфрама) выдерживают много­кратные нагревы и охлаждения без потери прочности. Сварные швы нехрупкие. Прочность рения до 1200 °С выше, чем вольфрама, и значительно превосходит прочность молибдена.

Рений устойчив на воздухе при обычной температуре. Заметное окисление металла начинается при 300 °С и интенсивно протекает выше 600 ос с образо­ванием высшего оксида Re207.

С водородом и азотом рений не реагирует вплоть до температуры плавления и не образует карбидон. Эвтектика в системе рений - углерод плавится при 2480 °С.

С фтором и хлором рений реагирует при нагревании, с бромом и иодом прак­тически не взаимодействует. Рений устойчив в соляной и плавиковой кислотах

На холоду и при нагревании. В азотной кислоте, горячей концентрированной серной кислоте и перекиси водорода металл растворяется.

Рений стоек против действия расплавленных олова, цинка, серебра и меди, слегка разъедается алюминием н легко растворяется в жидких железе н никеле.

С тугонлавкимн металлами (вольфрамом, молибдене»!, танталом и ниобием) рений образует твердые растворы с предельным содержанием рения 30-50 % (по массе).

Свойства химических соединений

Наиболее характерны и устойчивы соединения рения высшей степени +7. Кро­ме того, известны соединения, отвечающие степеням окисления 6;5;4;3;2;1; а также -1.

Оксиды. Рений образует три устойчивых оксида: рениевый ангидрид, триок­сид и диоксид.

Рениевый ангидрид Re207 образуется при окислении ренияокислородом. Цвет - светло-желтый, плавится при 297 °С, точка кипения 363 С. Растворяется в воде с образованием рениевой кислоты HRe04.

Триоксид рения Re03 - твердое вещество оранжево-красного цвета, образу­ется при неполном окислении порошка рения. В воде и разбавленных соляной и серной кислотах малорастворим. При температурах выше 400 °С обладает замет­ной летучестью.

Диоксид рения Re02 темно-бурое твердое вещество, получается восстановле­нием RejO; водородом при 300 °С. Диоксид нерастворим в воде, разбавленных соляной и серной кислотах. При нагревании в вакууме (выше 750 °С) диспро - порционирует с образованием Re207 и рения.

Рениевая кислота и ее соли - перреиаты. Рениевая кислота - сильная од­ноосновная кислота. В отличие от марганцевой кислоты, HRe04 - слабый окис­литель. При взаимодействии с оксидами, карбонатами, щелочами она образует перренаты. К малорастворимым в воде относятся перренаты калия, таллия и ру­бидия, умеренно растворимы перренаты аммония и меди, хорошо растворимы в воде перреваты натрия, магния, кальция.

Хлориды рения. Наиболее изучены хлориды ReCl3 и ReCl3. Пентахлорид рения образуется при действии хлора на металлический рений при температуре выше 400 °С. Вещество темно-коричневого цвета. Плавится при 260 °С, точка кипе­ния 330 °С. В воде разлагается с образованием HRe04 и Re02"xH20.

Трихлорид ReCl3 - красно-черное вещество, получается в результате терми­ческой диссоциации ReCl5 при температуре выше 200 °С. Температура плавЛения 730 °С, возгоняется при 500-550 °С

Известны два оксихлорида: ReOCl4 (температура плавления 30 °С, кипения 228 °С) и ReOjCl (жидкость, кипит при 130 °С).

Сульфиды рения. Известны два сульфида - RejS? и ReS2. Высший сульфид - темно-бурое вещество, осаждается сероводородом из кислых и щелочных раство­ров. Дисульфид рения ReS2 получается термическим разложением Re2Sy (выше 300 °С) или прямым взаимодействием рения с серой нри 850-1000 °С. ReS2 кри­сталлизуется в слоистой решетке, идентичной с решеткой молибденита. На воз­духе при температуре выше 300 °С окисляется с образованием Re207.

Области применения рения

В настоящее время определились следующие эффективные области применения рения.

Катализаторы. Рений и его соединения входят в состав катализаторов для ряда процессов в химической и нефтяной промышленности. Это наиболее масшатабная область примене­ния рения. Наибольшее значение приобрели рений-содержащие катализаторы в крекинге нефти. Применение рениевых ката­лизаторов позволило увеличить производительность устано­вок, повысить выход легких фракций бензина, снизить зат-. раты на катализаторы путем замены большей части платины рением.

Электроосветительная и электровакуумная техника. В ря­де ответственных случаев, когда необходимо обеспечить долговечность работы электроламп и электронных приборов (особенно в условиях динамической нагрузки), в этой об­ласти вместо вольфрама применяют рений или сплавы рения с вольфрамом и молибденом. Преимущества рения и его сплавов перед вольфрамом состоят в лучших прочностных характерис­тиках и сохранении пластичности в рекристаллизованном со­стоянии, меньшей склонности к испарению в вакууме в при­сутствии следов влаги (сопротивление водородно-водяному циклу), более высоком электросопротивлении. Из рения и сплавов вольфрама с рением (до 30% Re) изготовляют нити накала, керны катодов и подогревателей, сетки радиоламп. В электронных приборах используют также сплав Мо-50% Re, сочетающий высокую прочность с пластичностью.

Жаропрочные сплавы - одно из важных направлений ис­пользования рения. Сплавы рения с другими тугоплавкими металлами (вольфрамом, молибденом и танталом) наряду с жаропрочностью и тугоплавкостью отличаются пластичностю. Их используют в авиа - и космической технике (детали тер­моионных двигателей, носовые насадки ракет, части ракет­ных сопел, лопатки газовых турбин и др.).

Сплавы для термопар. Рений и его сплавы с вольфрамом и молибденом обладают высокой и стабильной термоэлектродви­жущей силой (т. э.д. с.). В СССР широко используют термопа­ры из сплавов (W-5 % Re) - (W - 20% Re). Т. э.д. с. этой термопары в пределах 0-2500 °С находится в линейной зави­симости от температуры. При 2000 °С т. э.д. с. равна 30 мВ. Преимущество термопары - сохранение пластичности после длительного нагревания при высокой температуре.

Электроконганкты. Рений и его сплавы с вольфрамом. от­личаются высокими износостойкостью и сопротивлением эле - 226 ктрокоррозии в условиях образования электрической дуги. Они более стойки, чем вольфрам, при эксплуатации в тропи­ческих условиях. Испытания контактов из сплавов W - 15-%Re в регуляторах напряжения и приборах зажигания дви­гателей показали их преимущества перед вольфрамом.

Приборостроение. Рений и его сплавы, отличающиеся вы­сокой твердостью и износостойкостью, используют для изго­товления деталей различных приборов, например опор для весов, осей геодезической аппаратуры, шарнирных опор, пружин. Испытания работы плоских пружин из рения при тем­пературе 800 °С и многократных циклах нагрева показали отсутствие остаточной деформации и сохранение начальной твердости.

Масштабы производства рения в зарубежных странах в 1986 г. находились на уровне 8 т/год. Основные производи­тели - США и Чили, в 1986 г. в США использовано 6,4 т ре­ния.

2. СЫРЬЕВЫЕ ИСТОЧНИКИ РЕНИЯ

Рений - типичный рассеянный элемент. Содержание его в земной коре низкое - 10 7 % (по массе). Повышенные концен­трации рения, имеющие промышленное значение, наблюдаются в сульфидах меди и особенно в молибдените.

Связь рения с молибденом обусловлена изоморфизмом MoS2 и ReS2. Содержание рения в молибденитах различных место­рождений составляет от Ю-1 до 10"5%. Более богаты рени­ем молибдениты медно-молибденовых месторождений, в част­ности медно-порфировых руд. Так, молибденитовые концент­раты, получаемые при обогащении медно-порфировых руд СССР, содержат 0,02-0,17 % рения. Значительные ресурсы рения сосредоточены в некоторых месторождениях меди, от­носящихся к типу медистых песчаников и медистых сланцев. К этому типу относятся руды Джезказганского месторождения СССР. Более богаты рением руды с повышенным содержанием борнита CuFeS4. В полученных флотацией медных концентра­тах содержится 0,002-0,003 % Re. Предполагают, что рений находится в них в виде тонкодисперсного минерала CuReS4 - джезказганита.

Поведение рения при переработке молибденитовых концентратов

При окислительном обжиге молибденитовых концентратов, проводимом при 560-600 °С, содержащийся в концентрате ре­ний образует оксид Re207, который уносится с газовым по­током (точка кипения Re207 363 °С). Степень возгонки ре­ния зависит от условий обжига и минералогического состава концентрата. Так, при обжиге концентратов в многоподовых печах степень возгонки рения не выше 50-60 % Из рис.60

Рас.60. Изменение содержания серы, рения и степени окисления молибденита (пунк­тир) по подам восьмиподовой печи

Видно, что рений возгоняется с газами на 6-8 подах (при обжиге в 8-подовой печи), когда большая часть молибденита окислена. Это объясняется тем, что в присутствии MoS2 об­разуется малолетучий диоксид рения по реакции:

MoS2+2Re207 = 4Re02+ Mo02+2S02. (5.1)

Кроме того, неполный возгон рения может быть обуслов­лен частичным взаимодействием Re207 с кальцитом, а также оксидами железа и меди с образованием перренатов. Напри­мер, с кальцитом возможна реакция:

CaC03+Re207 = Ca(Re04)2+C02. (5.2)

Номер пода

Советскими исследователями установлено, что наиболее полно рений возгоняется при обжиге молибденитовых концен­тратов в кипящем слое. Степень возгонки составляет 92-96 %. Это объясняется отсутствием при обжиге в печах

КС условий для образования низших оксидов рения и перре - натов. Эффективное улавливание рения из газовой фазы дос­тигается в системах мокрого пылеулавливания, состоящих из скрубберов и мокрых электрофильтров. Рений в этом случае содержится в сернокислых растворах. Чтобы увеличить кон­центрацию рения, растворы многократно циркулируют. Из системы мокрого улавливания выводят растворы, содержащие, г/л: Re 0,2-0,8; Мо 5-12 и H2SO„ 80-150. Небольшая часть рения содержится в шламах.

В случае неполного возгона рения при обжиге концентра­та рений, оставшийся в огарке, переходит в аммиачные или содовые растворы выщелачивания огарков и остается в ма­точных растворах после осаждения соединений молибдена.

При использовании вместо окислительного обжига разло­жения молибденита азотной кислотой (см. гл.1) рений пере­ходит в азотно-сернокислые маточные растворы, которые со­держат в зависимости от принятых режимов, г/л: H2S04 150-200; HN03 50-100; Мо 10-20; Re 0,02-0,1 (в зависимос­ти от содержания в сырье).

Таким образом, источником получения рения при перера­ботке молибденитовых концентратов могут служить сернокис­лые растворы мокрых систем пылеулавливания и маточные (сбросные) растворы после гидрометаллургической перера­ботки огарков, а также азотно-сернокислые маточные рас­творы от разложения молибденита азотной кислотой.

Поведение рения в производстве меди

При плавке медных концетратов в отражательных или руд - нотермических электропечах с газами летит до 75 % рения, при продувке штейна в конвертерах весь содержащийся в них рений удаляется с газами. Если печные и конвертерные га­зы, содержащие SOz, направляются в серной кислоты, то рений концентрируется в промывной циркулирую­щей серной кислоте электрофильтров. В промывную кислоту переходит 45-80% рения, содержащегося в медных концент­ратах. Промывная кислота содержит 0,1-0,5 г/л рения и ~500г/л H2S04, а также примеси меди, цинка, железа, мы­шьяка и др. и служит основным источником получения рения при переработке медных концентратов.

Статьи по теме